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Abstract
We show the connection between the extended centre of the quantum group
in roots of unity and the restriction of the XXZ model. We also give explicit
expressions for operators that respect the restriction and act on the state space of
the restricted models. The formulae for these operators are verified by explicit
calculation for third-degree roots; they are conjectured to hold in the general
case.

PACS numbers: 02.20.Uw, 02.30.Ik, 11.25.Hf, 75.10.Jm

1. Introduction

Alcaraz et al [1] discovered a remarkable fact: the XXZ model with the special open boundary
conditions (OBC) and a rational value of the anisotropy parameter admits a restriction. The
model arising as a result of the restriction coincides in the thermodynamic limit with one of
the minimal models of CFT. The algebraic reason for the restriction was explained in [2] and
[3]. It was shown in [2] that the XXZ model with the OBC considered in [1] has not only
integrability but also Uq(sl(2)) symmetry. In roots of unity, the state space of the model
decomposes to the sum of ‘good’ and ‘bad’ representations of Uq(sl(2)). The restriction of
Alcaraz et al is equivalent to throwing out ‘bad’ parts and keeping only the highest vectors
of ‘good’ representations. In [3], a new monodromy matrix was constructed that is bilinear
in terms of generators of the quantum group A(u), B(u), C(u),D(u) connected in the usual
way with the Hamiltonian of the model in [1] and compatible with integrability. The twisted
trace of this monodromy matrix (Sklyanin transfer matrix) also has Uq(sl(2)) symmetry and
admits the restriction.

In this paper, we generalize the Pasqier–Saleur construction. We show that not only
Uq(sl(2))-invariant but also a much wider class of OBC indeed admits the restriction (the
Sklyanin construction of the transfer matrix also works for this wider class of OBC).

* Talk given at the RAQIS03 conference, Aneccy, 25-28/03/03.
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The decisive condition for compatibility of the Hamiltonian, the transfer matrix and other
operators with the restriction is their ‘weak’ commutativity with a special element of the
quantum group. The notion of ‘weak’ commutativity and its connection with the extension of
the centre of the quantum group in roots of unity is explained below.

In section 2, we describe the conditions that the operators must have in order to admit
the restriction. In section 3, some such operators are found. We discuss some possible
generalizations of the construction in the last section.

2. Centre of the quantum group and the restriction in roots of unity

As usual, let the R-matrix R(u) denote the solution of the Yang–Baxter equation. We consider
the simplest and well-known R(u) matrix corresponding to the six-vertex model, whose
elements can be written as

Rαα
αα (u) = ρ sin(u + η) R

αβ

αβ (u) = ρ sin u R
αβ

βα(u) = ρ sin η (1)

where α, β = 1, 2, α �= β and η is the so-called anisotropy parameter.
The quantum group A connected with R(u) is generated by A(u), B(u), C(u),D(u),

entries of the monodromy matrix L(u), which satisfies

R12(u − v)L1(u)L2(v) = L2(v)L1(u)R12(u − v). (2)

As shown by Tarasov [4], the centre of A in roots of unity, i.e. η = πm/N , is generated by
the following elements of A:

〈A(u)〉 = A(u)A(u + η) · · · A(u + (N − 1)η)

〈B(u)〉 = B(u)B(u + η) · · · B(u + (N − 1)η)

〈C(u)〉 = C(u)C(u + η) · · · C(u + (N − 1)η)

〈D(u)〉 = D(u)D(u + η) · · · D(u + (N − 1)η).

For convenience, we let 〈B(u)〉 denote the central element,

〈B(u)〉 = B(u)B1(u)

where

B1(u) = B(u + η) · · ·B(u + (N − 1)η).

We now fix V = C2 ⊗ · · · ⊗ C2 as the representation space of our quantum group. It is easy
to see that for arbitrary v,

〈B(v)〉 = B(v)B1(v) = 0

on this space. We can then define the state space of a restricted model as

W(v) = Ker B(v)/Im B1(v).

In the limit v → ∞, B(v) coincides up to a scalar factor with X, one of the generators
of Uq(sl(2)). As a result, W(∞) coincides with the space of the ‘good’ highest vectors of
Pasqier–Saleur. It was shown in [2] that the Hamiltonian of the XXZ chain with OBC of special
type

HXXZ =
L−1∑
n=1

[
σ +

n σ−
n+1 + σ−

n σ +
n+1 +

cos η

2
σ z

nσ z
n+1 + i

sin η

2

(
σ z

n − σ z
n+1

)]
is invariant under the quantum algebra Uq(sl(2)). Here, q = eη. Because of this, HXXZ is
properly defined on W(∞) = Ker X/Im X(N−1).
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In the thermodynamic limit, where L → ∞, the spectrum of low-lying states coincides
(in Cardy’s sense) with M(N − 1/N), one of the minimal models of CFT. In the next section,
we show that the construction in [2] can be generalized to arbitrary values of the parameter v.
The corresponding Hamiltonian is [3, 5]

HXXZ =
L−1∑
n=1

[
σ +

n σ−
n+1 + σ−

n σ +
n+1 +

cos η

2
σ z

nσ z
n+1

]
+ i

sin η

2

(
cot vσ z

1 − cot(v + η)σ z
L

)
. (3)

We now find the sufficient conditions for any operator Q to be projected on W(v). It is
easy to see that sufficient conditions are that there exist some operators Q̂ and Q̂1 for a given
Q such that

B(v)Q = Q̂B(v) (4)

and

QB1(v) = B1(v)Q̂1. (5)

Indeed, equation (4) guarantees that if a vector ψ ∈ Ker B(v), then the vector Qψ ∈ Ker B(v).
It follows from equation (5) that if the difference of two vectors ψ1 and ψ2 belong to Im B1(v),
i.e. if ψ1 − ψ2 = B1(v)χ , then the difference of Qψ1 and Qψ2 also belongs to Im B1(v).

3. Sklyanin transfer matrix and other operators respecting the restriction in roots of
unity

In [3], Sklyanin explained the integrability of the XXZ model with OBC of the form

HXXZ =
L−1∑
n=1

[
σ +

n σ−
n+1 + σ−

n σ +
n+1 +

cos η

2
σ z

nσ z
n+1

]
+ i

sin η

2

(
cot(ξ+ + η/2)σ z

1 + cot(ξ− − η/2)σ z
L

)
by constructing a special monodromy matrix and using it to diagonalize Hamiltonian (3) and
the corresponding transfer matrix by means of the algebraic Bethe ansatz.

Let K+(u) = K(u + η/2, ξ+) and K−(u) = K(u − η/2, ξ−), where

K(u, ξ) =
[

sin(u + ξ) 0
0 −sin(u − ξ)

]
.

Then K± satisfies the boundary Yang–Baxter equations [3, 6].
The Sklyanin monodromy matrix is defined [3] as


(u) = σ 2Lt(−u)σ 2K+(u)L(u)

=
[

1

1 
2
1


1
2 
2

2

]
.

Using (2) and the boundary Yang–Baxter equation, we can prove that 
(u) satisfies the same
equation as K+(u). It gives the commutation relations between 
i

j . The Sklyanin transfer
matrix is defined as

TS(u) = tr 
(u)K−(u)

= sin(u − η/2 + ξ−)
1
1 − sin(u − η/2 − ξ−)
2

2.



320 A Belavin

Explicit expressions for the elements of the Sklyanin monodromy matrix are


1
1(u) = sin(u + η/2 + ξ+)A(u)D(−u) + sin(u + η/2 − ξ+)C(u)B(−u)


2
2(u) = −sin(u + η/2 + ξ+)B(u)C(−u) − sin(u + η/2 − ξ+)D(u)A(−u)


2
1(u) = sin(u + η/2 + ξ+)B(u)D(−u) + sin(u + η/2 − ξ+)D(u)B(−u)


1
2(u) = −sin(u + η/2 + ξ+)A(u)C(−u) − sin(u + η/2 − ξ+)C(u)A(−u).

Let ξ+ = v − η/2 and ξ− = −v − η/2. Then the following relations are satisfied:

B(v)TS(u) = T̂S(u)B(v) (6)

where the explicit expression for the Sklyanin transfer matrix for these values ξpm is

TS(u) = sin(u − v − η) sin(u + v)A(u)D(−u)

+ sin(u − v − η) sin(u − v + η)C(u)B(−u)

+ sin(u + v) sin(u + v)B(u)C(−u)

+ sin(u + v) sin(u − v + η)D(u)A(−u) (7)

and

T̂S(u) = sin(u − v) sin(u + v + η)A(u)D(−u) + sin(u − v) sin(u − v)C(u)B(−u)

+ sin(u + v + η) sin(u + v − η)B(u)C(−u)

+ sin(u + v + η) sin(u − v)D(u)A(−u).

We have

B(v)
2
1(u) = 
̂2

1(u)B(v) (8)

where explicitly


2
1(u) = sin(u + v)B(u)D(−u) + sin(u − v + η)D(u)B(−u)


̂2
1(u) = sin(u + v + η)B(u)D(−u) + sin(u − v)D(u)B(−u).

Equations (6) and (8) were verified by direct calculation.
The operators TS(u) and 
2

1(u) thus satisfy the first condition, equation (4), for the
restriction. We conjecture that they also satisfy the second one, equation (5), if q is a root of
unity. This conjecture was explicitly verified by direct calculation for third-degree roots for
the case TS(u) (but not for the case 
2

1(u)). It would be nice to find an elegant general proof.
The operators TS(u) and 
2

1(u) depend on one parameter. There also exists a two-
parameter family of operators satisfying (4) and (5).

By definition, let

T (xij ; u1, u2) = x11A(u1)D(u2) + x22D(u1)A(u2) + x12B(u1)C(u2) + x21C(u1)B(u2).

Then

B(v)T (xij (v); u1, u2) = T (x̂ij (v); u1, u2)B(v) (9)

where T (xij (v); u1, u2) and T (x̂ij (v); u1, u2) are obtained from T (xij ; u1, u2) by suitably
substituting xij (v) and x̂ij (v) for xij and

x11(v) = sin(u1 − η − v) sin(u2 − v)

x22(v) = sin(u1 + η − v) sin(u2 − v)

x12(v) = −sin(u2 − v) sin(u2 − v)

x21(v) = −sin(u1 + η − v) sin(u1 − η − v)

x̂11(v) = sin(u1 − v) sin(u2 − η − v)

x̂22(v) = sin(u1 − v) sin(u2 + η − v)

x̂12(v) = −sin(u2 − η − v) sin(u2 + η − v)

x̂21(v) = −sin(u1 − v) sin(u1 − v).
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We have

T (x ′
ij (v); u1, u2)B(v + η)B(v + 2η) = B(v + η)B(v + 2η)T (x̂ ′

ij (v); u1, u2) (10)

where

x ′
11(v) = sin(u1 − η − v) sin(u2 + 3η − v)

x ′
22(v) = sin(u1 − 2η − v) sin(u2 − v)

x ′
12(v) = −sin(u2 − v) sin(u2 − 3η − v)

x ′
21(v) = −sin(u1 − η − v) sin(u1 − 2η − v)

x̂ ′
11(v) = sin(u1 − 3η − v) sin(u2 − η − v)

x̂ ′
22(v) = sin(u1 − v) sin(u2 − 2η − v)

x̂ ′
12(v) = −sin(u2 − η − v) sin(u2 − 2η − v)

x̂ ′
21(v) = −sin(u1 − v) sin(u1 − 3η − v).

If we require that the operators T (xij (v); u1, u2) and T (x ′
ij (v); u1, u2) coincide, we can

verify that this requirement is satisfied if η = π/3 or η = 2π/3. As discussed above, it follows
that the two-parameter family of operators T (xij (v); u1, u2) can be restricted on W(v).

We conjecture that T (xij (v); u1, u2) satisfies restriction conditions (4) and (5) if η =
mπ/p, where m and p are coprime integers.

It is easy to verify that the relation

TS(u) = T (xij (v); u,−u)

holds, where TS(u) is Sklyanin transfer matrix in (7).

4. Discussion

It was shown in [7] that the Sklyanin transfer matrix for the Pasqier–Saleur case (v → ∞)

after the restriction satisfies the truncated system of fusion functional equations. This system
defines the spectrum M(p/p + 1). This statement can also be generalized to finite v. It is
remarkable that the spectrum of states surviving after the restriction is independent of v [8].
This fact was discovered numerically in [5].

The explicit construction for additional central elements of the elliptic Yang–Baxter
algebra in roots of unity was given in [9]. It would be interesting to generalize the approach
in this paper to the elliptic case.

Another important problem is to generalize the Kitanine–Maillet–Terras construction
[10] of the local operators of the XXZ model in terms of elements of the monodromy
matrix to the restricted models. Namely, it would be interesting to build explicit operators
that simultaneously respect the restriction and have mutual locality (i.e. commutativity).
Constructing such operators would allow explicit formulae to be obtained for the correlation
functions in the restricted models.

Acknowledgments

I am indebted to M Jimbo, N Kitanine, and E Sklyanin for useful discussions and also to
W Everett for editorial assistance. This work was presented at the conference ‘On Recent
Advances in the Theory of Quantum Integrable Systems.’ I am indebted to the organizers
of the conference and especially to P Sorba for the opportunity to participate in this nice
and very interesting meeting. This work is supported in part by RFBR-01-02-16686, SSRF-
20044.2003.2 and INTAS-00-00055.



322 A Belavin

References

[1] Alcaraz F C, Barber M N and Batchelor M T 1987 Phys. Rev. Lett. 58 771
[2] Pasquier V and Saleur H 1990 Common structures between finite systems and conformal field theories through

quantum groups Nucl. Phys. B 330 523
[3] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 21 2375–89
[4] Tarasov V 1992 Int. J. Mod. Phys. A 7 Suppl 1B 963
[5] Alcaraz F C, Baake M, Grimm U and Rittenberg V 1989 J. Phys. A: Math. Gen. 22 L5–11
[6] Wang Y S 2000 J. Phys. A: Math. Gen. 33 4009
[7] Belavin A and Stroganov Yu 1999 Minimal models of integrable lattice theory and truncated functional equations

Phys. Lett. B 446 281 (Preprint hep-th/9908050)
[8] Belavin A unpublished
[9] Belavin A and Jimbo M 2002 Central elements of the elliptic Yang–Baxter algebra at roots of unity Preprint

hep-th/0208224
[10] Kitanine N, Maillet J M and Terras V 1999 Nucl. Phys. B 554 647


